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The asymptotic laws of shock waves propagation in a quiescent homogenous gas depend
in general on conditions which define the motions of gas in the disturbed region behind
the shock wave, and may vary considerably. These laws were the subject of detailed
analysis in a namber of works which dealt with plane, cylindrical and spherical shock
waves under conditions in which gas motions behind the wave weakened the shock wave
with consequent degeneration of the latter into an acoustic wave. For plane, cylindrical
and spherical wave propagation these asymptotic laws of propagation are formulated as
follows [1]
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Here a, is the velocity of sound in the quiescent gas, ¢ is time, 7, the shock wave co-
ordinate, and ¢y and r, are certain constants.

The degeneration of a shock wave into an acoustic one takes place in accordance with
the asymptotic Formulas (1) at infinity only, and the shock wave has no asymptote in the
r¢-plane, receding to any distance away from an arbitrary straight liner — a, {t ~ ¢,) =
= const.

An analysis is made in this paper of the asymptotic laws of detonation wave propaga-
tion under conditions in which a strong detonation wave is weakened by gas motions be-
hind it, and transformed into a Chapman — Jouguet wave. It is shown that in contrast to
the asymptotic behavior of shock waves, a strong plane detonation wave tends at infinity
to the asymptote r — ¢, (¢ — ¢3) = const (c_, is the propagation velocity of the Chapman«—
Jouguet detonation wave), while the transformation of strong cylindrical, or spherical
detonation waves into a Chapman — Jouguet wave may, in general, occur at finite distances.
The flow pattern of cylindrical and spherical waves after these have reached the Chapman
— Jouguet mode is also studied.

A brief account of the results of this work on plane waves is given in [4.

Let v, p, and p be respectively the gas velocity, pressure, and density, ¢ the detona-
tion wave propagation velocity, and y the gas specific heat ratio; subscript 1 denotes the
pressure and density of the gas at rest. The conditions at the detonation wave may then he
written as follows:

—pe=p—c), mE+p=p—c)P+p

1 3
TCZ+721+Q=%‘(U“C)2+"—L £ @




432 V.A. Levin and G.G. Chernyi

Here @ is the heat release in & unit mass of gas. Solving Egs. (2) for v, p, and p, we
obtain
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Here ¢ = a,2/c?, and g; is the value of ¢ corresponding to the Chapman — Jouguet
detonation wave velocity, defined by
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Let us consider expressions defining the gas parameters hehind a detonation wave of
ap intensity only slightly higher than that of the Chapman —~ Jouguet wave. For the defini-
tion of the deviation of the detonation wave from that of the Chapman — Jouguet wave we

introduce parameter € = 1 — g/g;. With the aid of this parameter we shall present Fxpres-

sions (3) as follows:
€
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On the assumption that parameter 8 is small we expaund the right-hand sides of Eqs. {4)
into power series cf this parameter, and limit our expansjons to terms containing its first
power (we assume the detonation wave to be sufficiently strong, so that g, is not close to
unity). We then obtain
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Here vy, pys py are respectively the values of velocity, pressure and density of the gas
behind the Chapman ~ Jouguet wave defined as follows:
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Ht follows from this that the gas parameters behind detonation waves close to the Chap~
man — Jougnet waves satisfy the same relationships as the Riemaun travelling waves, with
an approximation of the order up to and including €¥s. We shall make use of this deduction
later, when considering the asymptotic behavior of plane detonation waves. We note that
for ordinary shock waves {g; = 1) parameters p/p” and a — Y% (y — 1) v remain constant
behind the wave, if terms up to and including €2 are considered.

The equations of one-dimensional motions of gas
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(here v = 1, 2, 3 corresponds respectively to motions in the presence of plane, cylindrical,
or spherical waves), together with conditions (2) at the detonation wave make it possible
to express the derivatives of gasdynamic parameters with respect to coordinate r behind

the wave by means of gas parameters of the latter, as well as parameter dg/dr which de-
fines the wave acceleration. We, thus, obtain the expression for derivative av/arl.
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We shall begin by considering a plane detonation wave (v = 1). In this case the flow
behind a detonation wave represents, as was shown above, a Riemann travelling wave with
an approximation up to and including terms of the order of &/z. For such a wave we have
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where a is the velocity of sound, and @ an arbitrary function the form of which determines
the type of the travelling wave. Let us assume that function ® (&) is such that @ (fo) =
= v,, and that r® '(f)» o whenr + oo and f > fo, with «fo being the limit of f: r—{(a+
+ v) ¢ at the detonation wave.

From Eqgs. (8) we easily deduce that
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With r + oo a detonation wave tends to the Chapman — Jouguet detonation mode, so that

elJt/r, + 1. Consequently.
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Substitating this expression for dv/dr|, in Formula (7), and retaining in its right-hand
side the main terms of € only, we derive the equation which leads to the establishment of
the asymptotic law of detonation wave propagation
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Integration of this yields
dt \2
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Integrating once more, and using Expressions (5), we find the asymptotic law of plain
detonation wave propagation, as well as asymptotic formulas for parameters of the gas
behind the wave
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It follows from Formulas (9) that a plane detonation wave
degenerating into a Chapman — Jouguet wave tends towards
asymptote r— cﬁ — const

This behavior differs substantially from that of the asymp-
totic behavior of an ordinary plane shock wave degenerating
into an acoustic wave. According to the first of Eqs. (1) a
shock wave has no asymptote, and intersects the straight
line r — a,¢t = const for any large value of the constant in
the suaigﬁt line equation. The difference between the -
asymptotic behavior of a plane detonation wave (curve a)
and a plane shock wave (curve b) is shown on Fig. 1.

We shall now show that transition to the Chapman —
Jouguet detonation pattern of flows in the presence of cyl-
indrical, or spherical detonation waves propagating in a gas
at rest differs from flows in the presence of plane waves
that it may occur at a finite distance.

We revert to Eq. (7) which defines the derivative dv/dr
at points of a detonation wave. For small & this becomes
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It follows from this that for self-similar motions with v # 1, the negative magnitude
r.&v/&rl o tends in its absolute value to infinity at the rate of €~/2, when & tends to zero
Assuming further that the flow behind the detonation wave weakens the latter so that with

g'decreasing to zero the absolute value of r, dv/dr|, tends to infinity at a slower rate
than in the case of self-similar motions. We now obtain from Eq. (10) the following asymp-

totic Eq.:
otic Lq de
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Integration of this equation yields
gl = gy'lr— %L ln-rL;-
It will be seen from this formula that & becomes zero at a finite value of r, , therefore
2 the transition to the Chapman — Jouguet detonation pat-

tern occurs at a finite distance.

We shall study the conditions under which the above
assumption is fulfilled, and shall determine the flow in the
neighborhood of the point of transition to the Chapman —
Jouguet mode.

Let detonation wave DO (Fig. 2) be gradually weakened
8o that parameter & becomes zero at point 0, at ¢t = £y, and
then remains constant with further increases of t. We select
t the origin of time so that the equation of the Chapman —

" Jouguet OJ wave may be written in the form of r = e t.

We substitute in the Egs. of motion (6) for the unknown
Fig. 2 functions (v, p, p) and the independent parameters r, ¢ the
following new variables

S —-—-—-—

t
v=v,V, p=p,P, p=p,R, A=c:t, T=In—-
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After tnnsfomanon, we obtam
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We shall seek the solution of system (11) in the neighborhood of peint O behind the

detonation wave. It is easy to establish that system (11) has three sets of characteristics,
and that along the characteristics of the first two sets (acoustic) the following relation-
ships must be felfilled.

T+g( P\~ 19
N h— iV =4 T ( =) (12a)
7(1—4)1’ +('r+q)2 (}"H” T+1V)+'r+1 =0 (12b)
and along the characteristic of the third set (particle trajectories)
N+A—2IV=0, RP'—yPR =0 (12¢)

Here, the dot denotes differentlauon along the characteristic with respect tv T

H the values of functions V=V, (T), P =P4(7), R=Ry (7) do not satisfy the char~
acteristic relationships along a certain line A= A, (7), then the solution of Egs. (11} in
the neighborhood of this line may be expressed by expansion

V—Vy =Vy* (h— ho) +V* (b — A)? .. 19
with similar expansions for P and R. Consecutive coefficients of these expansions are
uniquely defined by the values of functions along line A = A, (7). When the initial data
fulfil the characteristic relationships, then one of the first coefficients of series (13) may,
for a certain value of T, be selected arbitrarily (for example Vl"(O) for solutions with
initial data on the characteristic of the first, or second set, and Rl‘(O) with initial data on
the third set characteristic).

Let functions )‘o, Vos Po and Rg conform to one of the first characteristic relationships
(12a), but not to the second. This means that line \ = )\O(T) is an envelope of the charac-
teristics.

In this case there are no solutions in the form of (13). There exist, however, solutions
of Egs. (11) in the form of series as follows:

V=Vot+V, YA —=A+Vo(h—N)+ -
P=P0+P1V;v)—-7v+ Pz()v)'—A:)"*' (14)
R=R,+ R Vh—A+R(M—MN+--

the coefficients of which are uniquely defined by initial data along line A= Ag (7). In
fact, a substitution of expansions (14) into Egs. (11) yields a system of relauonshxps
which permits a consecutive determination of coefficients of these. We write down the
first two of such systems

H_lRJvl (xo + A, — VO)RI__O
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In consequence of the assumption that functions Ag, ¥y, Pq, and R, satisfy one of the
conditions {12a), the determinant of coefficients of Vi« Py Ry in the lirst system of rela-

tionships is equal to zero. Then

p — i—q PoV;
= I F V(A=) G F 1) .
1——q RQV;(
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As the determinant of system (15b) with respect to ¥, P,, R, coincides with that of
system {15a), and is, therefore, also zero, the determination of parameters V,, Pa Ry
requires the fulfilment of the known condition, which together with Eqs. (16) makes it pos-
sible to derive the following expression for ¥,

R T+1 . 1'—9 1 Pa‘
Vit = 2 (b o — i V) s A+ an

T+1 RVo (o » {—¢q v—1 V,
g R (W V) 7

With this condition fulfilled, P, and R, may be defined in terms of V,. For the deter-
mination of ¥, use is made of the solvability condition of the system for subsequent
coefficients of expansions (14), etc.

Thus, expansions (14) yield the solution of Egs. (11) which depends on the arbitrary
fapctions A, ¥y, Py, Ry related to each other by one of Eqs. (12a). We note that when in
Formula (17) we have ¥ = 0, then functions Ag, Vgr Pos Ro also fulfil Eq. (12b), which
means that the solution is determined by expansion (13) with an arbitrary value V,*(0).

We shall use this solation for the construction of flows with strong cylindrical and
spherical detonation waves which degenerate at finite distances into Chapman - Jounguet
waves,

We shall begin by considering the flow behind a Chapman — Jouguet wave.

On the Chapman —~ Jonguet wave, i.e. with A= 1, we obviously have V=P =R=1. It
is easy to prove that these initial data are not characteristic when v # 1, but satisfy the
relationship (12a) with the upper sign. Therefore, the Chapman ~ Jouguet wave is the
envelope of acoustic characteristics when v # 1. In accordance with previonsly made state-
ments, the solution behind the wave will be of the form

Vet 4+ Vi—%+--, P=t+P YT+

R=1+R1V1-—X+...
From Egs. (16) and (17) we obtain
=Ry =y l—4 —_ Ve o (o M—1(r+g)"
P1 TRI—T,r_‘_qu: Vl"—ivl y Vl (2(1"9)(T+1))
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All of the subsequent coefficients of series (14) are, clearly, constants as well, so
that the flow behind the Chapman — Jouguet wave is necessarily self-similar, as though
the detonation wave were a Chapman — Jouguet wave everywhere beginning at the instant
t = 0. Depending on the selection of the sign of the expression of V', two different self-
similar flows with a Chapman ~ Jouguet detonation wave are possible. With a positive sign
we have a compression flow behind the detonation wave. Such flows occur in the presence
of a cylindrical, or spherical piston expanding at a corresponding constant velocity. When
the sign of the expression of V', is negative, we obtain a rarefaction flow. This flow may
either extend continuously to the center r = 0, thus corresponding to the well known case
of detonation wave propagation from a point {or line) ignition source, or it may join the
compression flow via the compression shock, and extend up to the surface of the cylindrical,
or spherical piston expanding at a constant velocity lower than that at which a compression
flow is obtained throughout the region between the detonation wave and the piston.

The described self-similar flows are completely analogous to the self-similar stationary
flows behind conical detonation waves analyzed in detail in works [3 and 4].

We shall now consider a flow behind that part of a detonation wave DO which precedes
the onset of the Chapman — Jouguet mode. (Fig. 2).

We shall seek a solution in this region in the form of series (14), in which functions
)\0, Ve Po and Ry fulfil condition (12a) taken with the upper sign, i.e. condition

. 1—¢ T+g( Po\"
A +Ao— i Vo =?'+—1(_) (18)

We shall limit our analysis to the small neighborhood of point O, and assume that for
small 7 functions A, V4, Py and Rg, and consequently all subsequent coefficients of
series (14) may be represented by integral powers of 7, such as

Vo =1 4Vt +..., Vi =V +Vut + ..y

Py =1 4Pyt + ..., Py =Py + Pyt + ...

Ry =1 +Ry7v + ..., R, =R,y + Ry;yT + ... (19)
=1 + Mt +A0% ...

From condition (18) we derive

A« =0, P — 1.‘_.ql/" -— T+1 = 0
1 o1 b 01 47‘{"4;‘2 0 (20)
From conditions (16) and (17) we find
Py = T+qu’ RIO—T+Z Vi (21)
V( _r)'\"l‘q Py Vo v—1 29
1 l-q['r(i—q)+1+q+'r+1] 2

We rewrite F.quations (5) at the detonation wave in the form
Ap =1 = d,t® 4 d,7° + ...
By virtue of
€ ’:1 - (}»[) -i~ )\-])) 2
it follows from (5) that d, = 0, and

7
Vo1'—’V10V_7Ta=—'<61+qd3)
Pnl"—plo-'/E:— i;g<61+qd3> (23)

Ry — Ry 7»2——1-:2(6 1izd3)

Formulas (20) to (23) define the seven parameters Ao Vo1r Pors Rops Vigs Py and Ry
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in terms of d ;. Subsequent terms of these series may be similarly found for Ay, Vs ves
Vir oee

It is convenient to express all magnitudes in Formulas {20) to (23) in terms of ¥, as
follows

1 o 4 | g)? o
P01=’I’Rox==Trﬁvo1=ﬂtalz=w(vmz—vl %)

1
Pyo= 1Ry = R{’Y—E—Z Vi {24)

. e
Vi — Vi2—Vy V Vit — Vi ? = — I".fi_(j (6 ‘i‘*j‘:%@) =—d

The latter dependence, represented on Fig. 3, defines the relation between Vy, and
parameter d, which characterizes the wave form.

d/gez

B 1 2 3
Fig, 3

For d, = 0 the solution is a twosvalued one: Vi = =+ V1" This corresponds to cases
considered above in which either gelf-similar compression, or rarefaction flows occur
behind the Chapman — Jouguet detonation wave. The solution is single-valued for all
dy > 0, with parameter V,, increasing monotonously from V,° with the increase of d 5, and
tending to infinity when d » % ¥,°2. The solution in the region DCO (Fig. 2) bounded by
the detonation wave segment DO and segments of characteristics CO of the first, and DC
of the second set. It is easy to verify, when considering the validity of this solution in the
region of positive values of T beyond the characteristic €0, that conditions at the detona-
tion wave will be fulfilled, if the wave equation for 7 > 0 is taken in the form

o, © L
A,D=1+d373+"'t ds "’:dﬁ@%&'

With this, the detonation wave will be super-compressed everywhere, with the exception
of point 0. At point O, at which the Chapman — Jouguet mode is obtained, the detonation
wave will have an inflection point. The wave form for the case of positive 7 is shown on
Fig. 2 by the dotted line OD,.

Let us assume that behind the characteristic CO the derived flow is joined by another
in which the velocity increase along segment CC, of characteristic DCC, differs from that
of the analytical extension of the flow from the DCO region.

Let us determine the values of functions ¥, P, and R along the CO characteristic, For
this purpose we shall, first of all find equations of the characteristic for the generalized
case of flows defined by Formulas (19} to {22). Using expansions {14) and (19}, and alse
Egs. (20) and (21), we obtain from relationships (12a}, after certain transformations, the
following equations for the characteristics of the first and second sets:

D h= 4 2t IV YT F TP — A

dh 1—v—2q 1—gq
.&?.g.x_— T +2<‘r 1V01 %g)r—’r {25)
B—7l—aq § SR
* T Y Via Vi Ahot? - A+

Looking for the expression of the first set characteristic passing through point 7 = 0,
A =1 in the form of

Ao=1 bat et .
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we obtain

61=0, (c,~—~M)1:=1/¢(1—q)Vmyh—c.ltl

It follows from th|is that
A=1- [A:g'—llu (1-—q)’V1oa] L L S (26)
The right-hand segment of curve (26) is to be taken for V', ,> 0, with 7 < 0, and the
left-hand segment of this curve for ¥4 <0 with 7> 0.
The characteristic Eq. (26) for flows behind a detonation wave defined by Formulas

{24) becomes A1 — /1‘ 1 — g? V” e
while for velocity V along the characteristic we obtam
Vel—1Y (—qV?e+.. (27)

Velocity distribution (as well as that of pressure and density) and characteristic CO
will thus be independent of parameter d;, and will be the same as those in a self-similar
flow behind a Chapman — Jouguet wave. This makes it possible to extend the flow defined
for a certain d5 > 0 by Formulas (24) beyond region DCO, and to join it along characteris~
tic CO to a flow defined by the same Formulas (24), but with d5 of a different value. With
this the derivative of the detonation curvature will suffer a discontinuity at point 0. Weak
discontinuities will also occur in the flow region, expanding from point O along the char
acteristic of the second set, and along the trajectory. Such discontinuities do not, however,
appear if only the first two terms of expansions {12} are taken into account. In particular,
if an extension of the flow beyond the characteristic with d, = 0, i.e. of a selfesimilar
compression flow is considered, then the detonation wave will remain a Chapman — Jouguet
wave even beyond point 0.

Solutions {24) are not applicable to the case of a flow extending beyond region DCO, if
the velocity increase along segment CC; of the second set characteristic is lower than
that of a self-similar compression flow, as in these solutions ¥, > V,° for all values of
d3. In this case we have behind the Chapman — Jouguet wave O] a region bounded by
either the compression shock, or the first set characteristic emanating from point 0, in
which a self-similar rarefaction wave appears.

Let the equation of the discontinuity line coming out of point O be

s =1 — 1y (1 — W A% +... (28)

From what was said before about the characteristic of the firat set in a rarefaction flow,
it follows that 42K 1.

Along the discontinuity line the following conservation laws must be satisfied

pr(t1i—c)=pe(v2—¢), P (Ul—c)"f‘ D1=p3(va—c)* 4 ps

1 ey Y P 2 kol )
( 1 ) T — 14 PI ( 2 c) pi
With the varmbles used here these reIanonshxps, when solved for parameters behind

the discontinuity (superscnpt"’). become

. 201+ g P
V= 1+1V+1~qc T EEI—F AV =G D=0
__1—1 2r(1—gqp T+1 ¢\ (29)
P il t (r+1)(w+q)*R(V T—q cJ)

‘e _ X+t e \y—t T+1 e \? 2(r+¢* P
R "R(V T—¢ c,) [T+1(V T—g c,) T aTna—e R]
Parameters ¥, R and P correspond to Lhe already known self-similar rarefaction flow in
front of the discontinuity, and ¢/ ¢ = Ag + A,
A substitution of expressions for v, P R, and A, into Egs. (29) yields
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a=Y1—q V1" A(1 —24) (30)

Looking again for a solution behind the discontinuity line in the form of (19), we take
into consideration conditions {20) to (22), stipulate the fulfillment of conditions (30) for
' A = A,, end find the same Expressions (24) for the
definition of all parameters in terms of ¥, ', while the
interdependence of parameters on and 4, defining the

A discontinuity line curvature, will, of course, differ
from that of the last relationship of (24), having the
Vo/¥° form (superscript* has been omitted)
) 0 1 Vi?— V2 4+ Vi Y Vii— (1 — AV, % =
Fig. 4 = V24 (1—24)
) This dependence is shown diagramatically on Fig. 4.
r ¢ For 4 = 0 the flow behind a Chapman — Jouguet wave is
a seli-similar compression flow with Vo = ¥,°% With
increasing A parameter V,, decreases, becoming zero
for A = 1. The compression shock bounding the seli-
similar rarefaction flow behind the Chepman — Jouguet
wave degenerates with this into a characteristic. With
a forther decrease of V', the equality 4 = 1 remains
unchanged, but the flow joining the characteristic
changes, becoming an analytical extension of the selfs
similar rarefaction flow in front of the characteristic for
the particular case of Vg = — ¥V,° With a still further
2 decrease of ¥, the characteristic is joined by a flow
g with a stronger rarefaction than that of a self-similar
Fig. 5 wave, For positive values of parameter V,, i.e. when
discontinuity OS is a compression shock, the derived
solutions, dependent on parameter 4 (i.e. on the curvature of the discontinuity line 08S),
may be joined in a continuous manner along characteristic CO to the flow behind the deton-
ation wave defined by Eqgs. (24).
It can be easily verified that along characteristic CO the velocity in the flow behind
the discontinuity is expressed by

V=44 Vu't+ Vo' VMt e (1—¢)* ViEle2 4 - - =
=14+ Y (1= (Vi* =V 1+ Ya(1 — @) V™| VP - - (31)

In accordance with this expression the value of ¥ for V10+> 0 is defined by Formula
Vel-Y{1—-—q V217 4..
and coincides with that defined by Formula (27) for flows behind a detonation wave. This
is evidently true for the pressure and density parameters. We note that the derivatives of
¥, P, and R with respect to A remain continuous when crossing characteristic CO.
Values of these derivatives, as shown on the example of the derivative of V
v _ 2
|, (1—q)r+' °t
are independent of parameters A and d .
Characteristic {(28) and line A = A, ('r) coincide when on = 0. The solution behind
the characteristic may be sought in the form given by (13), and with the aid of Formulas
{24) for ¥V, and A, we find that
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V= 1—'1:1,_—?V1°21+V’° [ A—1 -{-(i q) V1°212]+...

Here V¥ ,4* is arbitrary. For any V,4* this solution joins continuously the solution in
region DCO. The flow betweewn characteristics CO and OS does not have any singularities
for7=0,A = 1.

For V4% < 0 solutions behind the characteristic OS are given by expansions (14), and
have a singularity at point 7=0, A = 1.

It follows from Eq. (31) for the velocity along characteristic CO that for Vw < 0 the
solution behind characteristic OS cannot be continuously joined to the solution behind a
detonation wave along characteristic CO. It is easy to see that a continuous joining of
these two solutions along the second set characteristic originating at the Chapman —
Jouguet point is not possible either. In accordance with the second Formula of (25) the eq-
uation of such a characteristic may be obtained in the following form

_ 1T+e., G=1—q) T+g¢ AT
hmt—2 e 4 Glsaly, (TG

Because of the assumption that V10+ < 0, while in the flow behind a detonation wave
V10 > 0, this characteristic is different for each of the flows considered. We note that a
continuous joining of solutions along the second set characteristic is not possible when
Vioh > 0.

The derived solution defines in particular the transition of a self-similar compression
flow 1 (Fig. 5) with a Chapman — Jouguet wave OJ, originated by the piston expansion at
a corresponding constant velocity, into a rarefaction flow 2 with a Chapman — Jouguet
wave which develops after the piston has come to rest.
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